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High-level formalisms such as stochastic Petri nets can be used to model complex 

systems. Analysis of logical and numerical properties of these models often requires 

the generation and storage of the entire underlying state space. This imposes practical 

limitations on the types of systems which can be modeled. Because of the vast amount 

of memory consumed, we investigate distributed algorithms for the generation of state 

space graphs. The distributed construction allows us to take advantage of the combined 

memory readily available on a network of workstations. The key technical problem is 

to find effective methods for on-the-fly partitioning, so that the state space is evenly 

distributed among processors. In this paper we report on the implementation of a 

distributed state-space generator that may be linked to a number of existing system 

modeling tools. We discuss partitioning strategies in the context of Petri net models, 

and report on performance observed on a network of workstations, as well as on a 

distributed memory multi-computer. 
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1    Introduction 

Discrete-state models are a valuable tool in the representation, design, and analysis of com- 

puter and communication systems, both hardware and software. We are particularly inter- 

ested in stochastic formalisms, where some probabihty distribution is associated with the 

possible events in each state, so that the model implicitly defines a stochastic process. These 

are then used to carry on performance, reliabihty, or performability studies. 

Most real systems, however, exhibit complex behaviors which cannot be captured by 

simple models having a small or regular state space. Given the high expressive power of 

formalisms such as Petri nets [21, 20], queuing networks, state charts [15], and ad hoc 

textual languages [12], the correct logical behavior can, in principle, be modeled exactly. The 

timing behavior is then defined by associating either an arbitrary probability distribution 

to the duration of each activity (resulting in a stochastic process usually solved by discrete- 

event simulation), or an exponential or geometric distribution (resulting in a continuous-time 

Markov chain (CTMC) or a discrete-time Markov chain (DTMC), respectively). 

We focus on the CTMC case, where, with the exception of very special circumstances, 

such as the existence of product-form solutions [3, 23], or of extensive symmetries [5, 11], 

the numerical solution requires the generation and storage of the entire state space. This is 

the main drawback of the numerical approach, since the size of the state space can easily 

be orders of magnitude larger than what can be stored in the main memory of a single 

workstation. 

An important aspect of the problem is that the amount of memory needed for the state- 

space is much larger than that needed for the numerical solution. This differential arises 

because, during generation, states (typically vectors of integers) must be represented whereas, 

during the numerical solution, integer-value codes for states sufiice. Another important 

aspect is that the computational time spent generating a state-space is of the same order as 

the time spent solving it. Because of these facets, it is conceivable to generate a large model's 

state-space on a handful of processors, then transfer the encoded state-space to a single 

processor for numerical solution. This technique increases by an order of magnitude the size 

of models that can be solved numerically. It is an approach suitable for multiple workstations 

on a local-area network (LAN). The ubiquitous presence of LANs makes this approach very 

palatable, as it effectively offers a much larger overall amount of memory and computational 

power to the analyst, without requiring the purchase of new hardware. However, one should 

note that the serial solution phase will remain a bottleneck until parallelized. The utility 

of the approach is for logical analyses that can also be parallelized (we discuss instances of 

these), and for capability of solving models too large to tackle on a single workstation. 

Section 2 presents the interface used to integrate an existing modehng tool with our 

distributed algorithm. Sections 3 and 4 discuss sequential and distributed state space explo- 



ration, respectively. Section 5 presents two analysis algorithms that can be applied to the 

state space generated in a distributed fashion. 

Our approach is not tied to a particular formalism. This greatly simplifies the paral- 

lelization of any state-space-based modeling tool. In particular, we have, for now, applied 

the approach to the tool SPNP [8], and report the performance results in Section 6. Section 

7 summarizes our work and discusses our plans for further investigation. 

2     A general interface to a distributed engine 

Our goal is to provide a "distributed analysis engine" which can be connected to any 

"discrete-state formalism front-end". Hence, the engine implementation must not depend 

on the type of formalism described by the front-end. While our data are obtained by using 

a stochastic Petri net front-end, nothing in the engine reflects this. Indeed, we are able to 

integrate the engine we describe with a commercial modeling tool, BONeS Designer. Our 

present tool (with its capabihty for stationary analysis) may serve as a substitute for the 

transient analysis engine we've also integrated into Designer [18]. 

In general, we can say that the reachability set S, the set of states reachable from a 

given initial state SQ, is a subset of some structured countable set, often IN" for some n. The 

reachability graph (5, A) is a directed labeled graph whose nodes and arcs are the reachable 

states and the possible state-to-state transitions, respectively. Each arc is labeled with the 

identity e of an "event": s-^s' means that event e causes a change of state from s to s'. If 

two events ei and e2 can cause the same change of state, they correspond to distinct arcs in 

A. The model defines which events are enabled, i.e., can occur, in each state s, among the 

set of possible events E. 

A model can then be considered as a way to define a set of functions which define the 

interface between the engine and the front-end. Besides reflecting good software engineering 

practice, this approach highly facilitates the integration of the engine to new front-ends. The 

state space S is implicitly described by the following functions: 

• Initial, with no input parameters, returning the initial state SQ for the model. 

• Enabled{s), returning the (finite) set of events enabled in state s ^ S. 

• 

• 

NewState{s, e), returning the state reached from state s ^ S when event e E Enahled{s) 

occurs. 

Compare{si,S2)-i returning the result of the comparison between two states, SMALLER, 

EQUAL, or LARGER. This function prevents the engine from having to know the 

structure of the state, yet it allows to perform an efficient search for a given state in a 



large set of states (for example using a binary search). The only assumption is that a 

total order can be defined over the set of reachable states. 

To define the stochastic behavior, additional functions are needed, depending on the 

type of stochastic process underlying the model. The simplest case is when all events have 

exponentially distributed durations, resulting in an underlying CTMC. Then, we only need 

a function 

• Rate{s,e), returning the rate at which event e G Enahled{s) occurs in state s e S m 

isolation. 

In many models, however, it is useful to describe "instantaneous events" which can occur 

in zero time, as soon as they become enabled. In GSPNs [1], this is achieved by immediate 

transitions; in queuing networks, by passive resources. If a state enables an instantaneous 

event, "timed events" cannot occur, they are de facto disabled. We disallow infinite sequences 

of instantaneous events; while these subtle situations can be managed [6, 13], they usually 

indicate modehng errors. Then, the state space S can be partitioned into two classes, of 

"timed" and "instantaneous" states: 5^ and 5'^ where 5 G 5^ iff it enables instantaneous 

events. The additional functions needed to describe this class of models are: 

• Timed{s), returning TRUE or FALSE accovding to whether 5 is timed or not. 

• Weight{s,e)^ returning the weight, a nonnegative real number, for the occurrence of 

the instantaneous event e in the (instantaneous) state s. The probabiHty of event e in 

s is then obtained by normalization: 

D    I./      ^ Weight{s, e) 

Ee'eEnabled(s) Weight{s, t') 

This definition allows for some, but not all, of the enabled instantaneous events to have 

zero weight in a given state s. 

In certain existing tools, this interface is inadequate because it might be much more 

efficient to compute the rates or probabiHties for all enabled events in a given state s with 

a single function call. We ignore this aspect for readabihty's sake, but we observe that the 

algorithms we present are not affected in any substantial way by this choice. 

Finally, a model is used to study some quantity of interest. We assume this to mean the 

expected value of a stochastic reward process at some point in time, or in steady state. This 

process is defined by means of a reward rate function p defined over the state space: given 

a state 5 G 5, a given reward p{s) is gained for each unit of time the model is in state s. 

Hence, for example, the expected steady-state reward rate of the model is 

ses 



where TT is the steady-state probabihty vector. If we compute the expected cumulative time 

spent in each state during the interval (^1,^2], o-{ii,t2), and we use this vector instead of TT, 

the previous sum will result in the expected cumulative reward gained during this interval, 

and so on. In practice, multiple reward rate functions are specified, so we define 

• Reward{s, k), returning the value of the k-th reward rate function evaluated in state 

3    State space exploration 

In many studies, the logical analysis of the model is of interest in itself. For example, we 

might want to explore qualitative properties such as absence of deadlocks and livelocks, 

reachability (possibility of reaching states satisfying certain conditions), liveness, and so 

on. If the distributions of the durations of the timed activities have unbounded support 

(e.g., a geometric or exponential distribution), the timing and probabilistic behavior can be 

ignored, except for the restriction that timed events must be considered disabled whenever 

an instantaneous event is enabled. 

The state of the model is represented as a structured quantity, often of fixed size. For 

example, the state of Petri net is given by the number of tokens in each place (which could 

be stored as a fixed-size vector of nonnegative integers), the state of a multiclass queuing 

network is given by the number of customers of each class in each queue, and so on. 

More complex storage schemes might be devised to save storage, often based on the 

existence of model invariants. For example, in a closed queuing network or in a Petri net 

covered by P-invariants [17], the customer populations at each queue, or the token population 

at each place, satisfy certain linear relationships. Sparse storage techniques can also be used 

to store a state, and it is possible to store an integer in just [log k] bits, if an upper bound k 

on its value is known (again invariants can be used for this purpose) [2]. We do not discuss 

these techniques here, since they are independent of our method and apply equally well to 

both sequential and distributed analysis. 

Since S and (5, A) are defined only implicitly by the model, their size and characteristics 

might not be known a priori: 

• S might be finite or infinite. We assume that it is finite, but its size is normally very 

large and known only at the end of the exploration. 

• (S^A) might be strongly connected, or it might have a node Si which reaches a node 

Sj^ but is not reachable from it. We then say that node 5,- is transient, since there is a 

positive probability that the model will never enter Si again after leaving it. 



Procedure ExploreSequential 

1. 5 <— {Initial}; Snew <— 5; A <— 0; 

2. while 35 G Snew do 

4. for each e G Enabled{s) do 

5. 5„eti; ^ NewState{s,e); 

6. if 5netu ^ 5 then 

8. iJ   ■*—  '-' U l^netyj) 

9. end if; 

10. A ^ A{J {s-^Snew]\ 

11. end for; 

12. end while; 

Figure 1: Sequential state space exploration 

In certain models, the existence of transient states is an indication of a problem, either 

in the model, or in the system being modeled. S contains a transient state if and only 

if 5o is transient, so it is sufficient to test for this condition (see Section 5). 

• Some system characteristics of interest might be studied by considering the reachability 

set alone. For example, we could define a complex condition which we hope never 

arises in the model (a circular wait in the model of a tasking system, or an inconsistent 

status in the model of a communication protocol). This condition can be expressed 

as a function c : 5 ^ {0,1}, where 0 corresponds to "good" states not satisfying the 

condition, and 1 corresponds to "bad" states. For any reachable state s G 5, we can 

then check the value of c{s). Clearly, this analysis requires only to store the reachability 

set S (strictly speaking, it requires to enumerate it, but, if (5, A) contains cycles, the 

graph search requires in general to store all previously explored states, to avoid being 

caught into an infinite loop). Other system characteristics might require to store the 

reachabihty graph (5, A). 

The sequential algorithm for state space exploration is shown in Fig. 1. If Snew is stored 

using a single-link list managed as a FIFO queue, the reachability graph is explored in 

breadth-first order. Each element in the list contains, either directly or by pointing to it, a 

different state. If A is not needed, the statements referring to it in Fig. 1 can be omitted. 

Note that the pseudo-code assumes that S is finite; if not, the algorithm will not halt. 



3.1     Generation of the stochastic process 

When the questions asked of the model refer to the timing and stochastic behavior, a stochas- 

tic process (not just a reachability graph) must be built as a result of the state space explo- 

ration. If the underlying process is a CTMC, this means building an infinitesimal generator 

matrix Q, where Qs,s' is the rate of going from state 5 G S''^ to state 5' G 5'^, for s 7^ s'. The 

diagonal entries of Q are defined to be the negative of the sum of the off-diagonal entries on 

the corresponding rows, Qs,s = ~Y,s'esT,s':^sQs,s'', in our discussion, we assume that they 

are stored explicitly only during the CTMC solution. It is usually more efficient to use an 

alternative exploration algorithm, which stores only the timed states T. Analogously, only 

a "reduced reachability graph", basically equivalent to Q, needs to be stored. Whenever an 

instantaneous state is found, a depth-first search is initiated, to determine the set of timed 

states reached. If 
„ eo       ei       62 efc_i      e^    / 

where 3, s' € S'^ and ^i, 52,..., 5;^ G S^, the rate of going from s to s' along this path is 

k 

Rate{s, Co) • _Q Prob(si^ ei) 

and Qs,s' is the sum of these rates over all possible paths of this type from s to 5', including 

paths of length one, that is, paths with no intermediate immediate states. 

This is illustrated in Fig. 2. Procedure BuildQ is called first, which in turn uses the 

recursive procedure GenerateTransitions. For simplicity, we assume that S'^, S'Jg^, S^^^, 

and Q are global variables and that the initial state is timed (the algorithm can be easily- 

modified if this is not the case). S^^^ is used as a stack, and is needed to recognize cycles 

of instantaneous events, which we consider illegal. When the execution returns to BuildQ, 

S^g^ is empty, that is, instantaneous states are stored only temporarily. Note that entries 

of Q are incremented, not set, by statement 6 in procedure GenerateTransitions. This is 

because multiple paths of instantaneous states might exist between the same source and 

destination. 

4    Distributed state space exploration 

Like the sequential algorithm, the distributed algorithm shown in Fig. 3 performs a 

breadth-first exploration of the state space. Each state reached is either explored locally or 

sent to another process. For the distributed algorithm, we then define another function in 

the interface: 

• Partition{s,N), returning the identity of the process to which state s is assigned, an 

integer between 0 and A^ — 1. 



Procedure BuildQ 

1. S'^ ^ {Initial}; Sl^ ^ {Initial}; S^^ ^ 0; (? ^ 0; 

2. while 35 e 5jg^ do 

4. for each e G Enabled{s) do 

5. 5„e«) <— NewState{s,e); 

6. GenerateTransitions{s, Rate{s, e), 5„eu;); 

7. end for; 

8. end while; 

Procedure GenerateTransitions{t, r, t„ew) 

1. if Timed{tnew) then 

2. if ^„e«; ^ 5'^ then 

3. '-'raeiu  ^~ ^new ^ i*netu/) 

4. S^ ^ S^ U {tnew}; 

5. end if; 

6- Qt,t„ew   ^~~   Qt,t„ew + ^; 

7. elsif i„e«; ^ 5^e«; ^hen 

°- '-'new   ^~  '-'new ^  l^new/j 

9. for each e G Enahled{tnew) do 

10. GenerateTransitions{t, r ■ Prob{tnew, e), NewState{tnew, e)); 

11. end for; 

1^- '-'new   ■*"  '-'new \ i.*new/j 

13. else 

14. error("cyde of instantaneous events^''); 

15. end if; 

Figure 2: Sequential generation of Q 

Assuming we have N processes running on N processors, this function partitions the state 

space into N classes, one assigned to each process(or), and is a critical factor affecting the 

performance of the distributed algorithm (see Section 6.1). 
The incidence matrix of the reachability graph is stored in column-wise format. Hence, 

when process i determines that state Snew "belongs" to a remote process j ^i,\t sends both 

Srtew and the arc leading to it, s-^Snew, to ;. As the representation of a state can be quite 



rocedure ExploreDistributedi 

1. if Partition{Initial) = i then 

2. 5"' <— {Initial]] 

3. else 

4. S' -0; 

5. end if; 

6. 9'     4- - 5- A'' ^ 0; 

7. while " noi received terminate message''^ do 

8. while 35 G S*;,^ do 

9. '-'new   *~  '-'neio \ {■^jj 

10. for each e G Enabled{s) do 

11. -Sneiv <— NewState{s,e)] 

12. j = Partition{snew: N)] 

1.3. if j ^ z then 

14. SendState{j. Snew)', 

15. SendArc{j, s-^Snew)] 

16. else 

17. if -Sneit; ^ 5"' then 

18. '-'ne-u;  ■*"" ^new ^ {•Snew/! 

19. 5"^5'U{s„,^}; 

20. end if; 

21. A' ^ A^ U {s^s^ew}] 

22. end if; 

23. end for; 

24. end while; 

25. Snew ^ Sl^ew ^ RtceiveStatcs] 

26. A' <— A' U Receive Arcs] 

27. end while; 

Figure 3: Distributed state space exploration using N processes 

large, states are assigned an index. Locally (i.e., in process ^), state s G S'Ms identified by 

the index A:, if 5 is the A;-th state added to 5'. Globally (i.e., in process j ^ i). state 5 is 

identified by a two-component index: {k.i). State indices, rather than actual states, are 

stored and exchanged whenever possible. 



When i sends state Snew to i, with the function call SendState{j, Snew), the local index of 

Snew in j is not known to i, so the actual state must be sent. However, when the arc s-^Smw 

is sent, with the function call SendArc{j,s-^Snew): the global state index of s is sent, since 

it is known to i. Also, the destination (actual) state Snew does not have to be sent a second 

time to describe the arc, since states and arcs are always sent in pairs. 

The functions ReceiveStates and ReceiveArcs return all the states and arcs sent to 

process i since the last time they were called, respectively. Each state x in the set returned 

by ReceiveStates has a corresponding arc {ki,j)-^x in the set returned by ReceiveArcs. 

The set S' is then searched, li x e S', its previously assigned index is retrieved, otherwise 

X is added to S' and a new index is generated for x. If k2 is the local index of x, an arc 

(j^^^j)_L(A;2,0 is added to A'. These are high-level descriptions; the actual implementation 

details for the communication mechanism are beyond the scope of this presentation. 

In the sequential algorithm, the choice between storing the incidence matrix of the reach- 

ability graph in row-wise or column-wise format is irrelevant. For the distributed version, 

however, a row-wise format would require a more complex protocol. With row-wise storage, 

the entry Si-^S2 is stored by process i as (fci,t)-^(^2,i), if ^i is assigned index (h^i) and S2 

is assigned index (/t2,;)- However, i does not know the local index ^2 of 52, so it must send 

52 to j, and wait for (A;2,i) in return. Only then i can complete the storage of the entry in 

the incidence matrix. With the column-wise format we use, i simply sends the pair S2 and 

(jt^^ 2)_L52 to ;, without having to wait for further information from j, since it is up to ; to 

fill-in the value for the arc destination. 

The communication complexity of the distributed state-space algorithm is then one (ac- 

tual) state, one state index, and one event, for each "cross-arc" (an arc from a state in 5' to 

a state in S'-', « 7^ i)- 
When process i finishes exploring its local states (^^^^ is empty), it waits for more 

states and arcs from other processes. When all processes have finished their local work and 

are waiting to receive a message, the distributed state space exploration has completed. 

Detecting termination is a well-known problem with many solutions. In the workstation 

network data we present, we used the circulating probe algorithm described by Dijkstra et 

al. [10]. We have since made the engine portable by using MPI [14] as the communication 

mechanism, and in that context employ the scalable "Non-committal barrier" described by 

Nicol [19]. 

4.1    Distributed generation of the stochastic process 

For brevity's sake, we do not present the pseudo-code for the distributed generation of 

the underlying stochastic process, obtained by merging the algorithm for the distributed 

generation of the state space of Fig. 3 with the elimination of the immediate states used in 



the algorithm of Fig. 2. Only timed states are assigned to a particular process using the 

partition function. Immediate states are managed in the process that generates them, and 

then discarded after all the timed states reachable from them have been explored. Storing 

the immediate states together with the timed ones is a reasonable alternative (see [6, 4] for 

the tradeoffs involved in storing these states permanently), but is probably less appropriate 

if the paramount goal is to minimize storage requirements. 

At the end, process i contains the states 5^'* = {5 G 5"^ : Partition's, N) = i] and the 

entries of Q corresponding to arcs reaching these states, Qt^s^.'- 

4.2    Implementation issues 

Before concluding this section, we discuss a few implementation issues. Communication 

between processes is accomplished through message passing. Reliable message passing is 

provided by acknowledged messages: a sender does not continue until the receipt of its 

message has been acknowledged. Since the receipt of a message generates a signal, the 

receiver can acknowledge the message almost immediately, thus minimizing the waiting time 

for the sender. 

Because of the potentially high number of states sent to another process, each state/arc 

pair is buffered in the sender. The buffer size is a compilation parameter. As the size 

increases, more states and arcs can fit into a single message, and fewer, although larger, 

messages are exchanged. This reduces one type of overhead, but it also increases the like- 

lihood that a process j remains idle waiting for states to be imported, while some other 

process i delays sending states that j should explore because the buffer is not full. 

5    Distributed analysis of the model 

Once the state space is built, analysis can proceed. We present two types of state-space- 

based analysis. The first type analyzes logical properties of the state-space; we point out 

a number of questions that can be answered in a distributed fashion using the distributed 

state-space. The second type is numerical analysis; we presently perform this sequentially, 

but point out some unexpected ramifications of our distributed generation of the state-space. 

In the following, we use the following symbols: 

• n and 7/ are the total number of tangible states and arcs stored; n = \S \ is the 

dimension of (5 and 7; is the number of nonzero entries mQ: rj = |{(51,52) : Qsi,s2 > 0}|- 

• n' and ?/' are the analogous quantities for process i in the distributed algorithm: n^ = 

\S'^'''\ and 7/' = |{(si,52) : Qsus2 > 0,52 € S'^'''}\- Furthermore, we define r]^'' to be 

the number of entries stored by i corresponding to events originating from states in j: 

10 



V''' = \{{su S2) : Qsus2 > 0, si € S^'^ A 52 G S^'% Hence, EI'O' n' = n, EI'O' V' = »?, 

and Efjo' '?'■''■ = V'- 

5.1    Distributed detection of logical state properties 

The notion of reachability pervades logical analysis of state-spaces: "is it possible to reach 

some state si from another state SQ?". AS we will see, solution to this problem permits one 

to address higher-level questions. For instance, to determine whether there are any transient 

states, it is sufficient to test whether the initial state is transient, that is, whether there exists 

a state s e S'^ which does not reach 5o. This is equivalent to determining whether there 

is a state s unreachable from SQ in the "reverse reachability graph", obtained by reversing 

the direction of all arcs. A simple breadth-first search algorithm that identifies all states 

reachable from SQ in the reverse graph can be used for this purpose—if any state remains 

untouched, SQ is transient. An efficient implementation requires a row-wise storage of the 

incidence matrix of the reverse graph, and this is a further reason to use a column-wise format 

for the storage of the incidence matrix of the original graph, since one is the transpose of 

the other. Note that the state-space generation process is itself a breadth-first search, and 

that the algorithm for testing whether SQ is transient is essentially the same. 

A sequential breadth-first search algorithm requires 0{rj) operations. A distributed im- 

plementation requires the same number of operations, but also 0{x) communication, where 

X= E v^' 
i,je{o,...,N-i},i^j 

is the number of cross-arcs. 

The communication cost is then of the same order of complexity as for the state space 

generation, although now only state indices, not the actual states, are sent between processes. 

Many other important questions about the behavior of a system can be answered in a 

distributed way using the information in the reachabihty set and graph: 

• Reachability: a condition c is reachable if there is a state s ^ S satisfying c. Each 

process i can simply test for this every time it adds a new state to S\ that is, this 

question can be answered without further examining the reachability graph. Deadlocks 

are just a special case: a deadlock is an absorbing state, that is, a state which does 

not enable any event. 

• Livelock: a livelock is a set of states L, 1 < \L\ < \S\ such that, once L is entered, no 

state in L-S can be reached. Formally, the reachability graph must contain a strongly 

connected component with two or more nodes and no outgoing arcs (no way to leave 

the component).   This is equivalent to testing whether the initial state is transient 

11 



in a modified reachability graph without absorbing states (these can be easily tagged 

during state-space generation). 

• Liveness: an event e is not live if there is a state s E S such that, once s is entered, e 

can never become enabled. If we define ^e to be the set of states where e is enabled, 

liveness can be established by checking that every state in S can reach a state in 

^e- The same breadth-first algorithm used to determine whether the initial state is 

transient can be adopted; the only difference is that the search in the reverse graph 

proceeds from the set of states ^e, not from 5o alone. 

• Conditional reachability: we are sometimes interested in determining whether there 

exist two states 3i, satisfying condition Ci, and S2 satisfying condition C2, such that 

5i reaches 52- If the entire graph is strongly connected, this is equivalent to asking 

whether conditions Ci and C2 can be satisfied. Otherwise, a modified version of dis- 

tributed breadth-first search algorithm used to determine whether SQ is transient can 

be employed. Instead of starting from 5o, we start from a set of states 5*2 = {5 : C2 is 

satisfied in 3}, and we determine the set of states R reachable from ^2 in the reverse 

graph. Our goal is to find a state in R satisfying si. 

5.2     Numerical solution of the underlying stochastic process 

In the current implementation, the numerical solution of the CTMC is centralized. While this 

prevents us from obtaining good speedups, it is important to remember that our immediate 

goal is to increase the size of models we can solve. As pointed out earlier, the large difference 

in memory requirements for the generation and solution phases means we can solve models on 

one processor that are an order of magnitude larger than we can generate on one processor. 

After building Q and testing for a transient initial state, each process sends its portion 

of Q to a solver process where the numerical solution is performed. This is reasonable given 

our current target level of parallelism, up to a dozen workstations. 

The "solution" sought for the CTMC is normally the steady-state probability vector 

TT satisfying TTQ = 0, if Q is ergodic, or the sojourn times in each transient state until 

absorption, or the transient instantaneous or cumulative probability in each state. In any 

case, the solution is given by a real vector v of size n. 

Vector V is generally not ail that one wishes to know about the model. Rather, v is 

used to compute the expected "reward" earned by the model. Rewards are a function of 

individual states; to compute the reward for state s one must generally have available the 

full state representation of s. Consequently, after computing v serially, we distribute it back 

to the processors holding the full state-space description. Recall now that the compact 

representation of a state identifies the processor that owns it. It is straightforward then to 
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return each component v' to process i, for z G {0,..., A'' — 1}. It is then possible to compute 

the expected value of a measure, m = I^ses^ Reward{s) ■ u^ in a distributed way. Process 

i computes m' = Yls^s^,' Reward{s) ■ u^, and a master process combines these subresults as 

Note that a number of measures may be computed simultaneously simply by using differ- 

ent reward functions. Since the number of requested measures can be quite large in practice, 

their distributed computation can result in a substantial time saving. 

An interesting observation should be made at this point. It is well known that the 

ordering of the variables (states) can affect the speed of convergence for iterative methods 

such as Gauss-Seidel and Successive-Over-Relaxation (SOR) [24, 22]. We indeed experienced 

this phenomenon when studying the number of iterations required by a sequential SOR 

implementation. In our first implementation, all the states in 5-^'' were ordered before those 

in 5'-^''"*'^, i G {0,1,... ,-/V — 1}, while the sequential state-space exploration results in a 

breadth-first order, starting from SQ. The ordering from the distributed implementation 

regularly required more iterations, even if the SOR implementation was exactly the same. 

We conclude that the natural breadth-first order by which states are generated and 

indexed in the sequential implementation is a better choice. To verify this, we sorted the 

states in the solver process according to a breadth-first order: if the distance from SQ to Si is 

less than the distance from So to Sj, Si is assigned an index smaller than Sj. This does not 

necessarily achieve exactly the same order as in the sequential implementation (since multiple 

total orders are compatible with the above partial order), but it does result in approximately 

the same number of iterations in the two implementations. We believe that state ordering 

will become an issue in a distributed implementation, where it requires reshuffling states, 

and the corresponding columns of Q, among the N processes. 

The partition heuristic might affect the convergence of a distributed solution in other 

ways as well. We have not yet considered these aspects in detail, but it is clear that the 

actual numerical values of the rates of the state-to-state transitions, rather than the mere 

existence or absence of an arc, will need to be taken into account in this case. 

For example, the idea of decomposabihty [9] is based on finding a block partition of the 

transition matrix where the entries of the off-diagonal blocks are orders of magnitude smaller 

than those in the diagonal blocks. This ensures that, after entering a block, the stochastic 

process reaches an "approximate steady-state" before moving to a different block. If the 

partition heuristic is such that each class corresponds to one or more blocks having this 

property, then several attractive iterative methods will be appropriate, since most of the 

iterations will occur within a single class, while only a few global iterations requiring the 

exchange of data across processors will be needed. A good candidate for this application is 

the multi-level algorithm developed by Horton and Leutenegger for the numerical solution 
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Figure 4: The FMS stochastic Petri net. 

of Markov chains [16]. 

6     Results 

We consider the model of a flexible manufacturing system (FMS) shown in Fig. 4. We 

omit a description of this SPN, since we are focusing on a comparison of the sequential and 

distributed algorithms for its analysis. The interested reader can consult [7] for a detailed 

presentation of its behavior and the meaning of its places and transitions. For this discussion, 

it is sufficient to observe that, as the number k of initial tokens in the three places PI, P2, 

and P3 increases, the number of states n and arcs T] increases sharply (see Table 1). The 

first partitioning function used (to be described) assigns states to processors depending on 

the markings in places PI, P2, P3. 

The largest size listed {k = 6) exceeded the storage capacity of a single workstation, 

yet was solvable (in approximately 40 minutes) by generating the state-space using five 
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Figure 5: Speedup for generation alone (left) and for overall solution (right). 

processors, and solving it on one. To assess how well the generation process parallelizes, 

we consider speedup on problems small enough to solve on one processor. Fig. 5 shows the 

speedup obtained by running our distributed algorithm on a set of homogeneous workstations 

(SPARCstation 10 class) communicating over a lOMbs Ethernet, for various values of the 

initial number of tokens k. The left plots refer to the timing collected for the generation of 

the state space alone, while the right plots refer to the timing for the entire solution process, 

assuming a single measure: the expected total number of tokens in PI, P2, or P3, in steady 

state. As previously noted, computing a single measure results in the lowest possible overall 

speedup since the computation of the measures can be almost perfectly parallelized. 

The speedup with N processes is obtained by dividing the runtime of the sequential 

solution (A'^ = 1) by the runtime of the distributed solution with N processes (defined as the 

maximum processor runtime). The runtime of a process includes the time spent executing 

user or system instructions and the time spent communicating or waiting for states to be 

imported, if A" > 1. Speedups are calculated only for model problems where the serial 

solution ran without paging (other than to load, of course). Speedup of the generation phase 

thus measures the relative cost of the communication overhead during that phase. 

Since our motivation is exploiting distributed memory, the case of highest interest is that 

of fc = 5, the largest problem. Here we see evidence of a favorable computation to communi- 

cation balance (as well as good load balance), since speedup increases almost linearly in the 

number of processors. The complete serial solution required nearly an hour of computation. 
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k n n 
1 54 155 

2 810 3,699 

3 6,520 37,394 

4 35,910 237,120 

5 152,712 1,111,482 

6 537,768 4,205,670 

Table 1: Size of the tangible reachability set and graph as a function of k. 

We also ported our distributed engine to an IBM SP-2 multiprocessor. Fig. 6 shows 

the speedup for the state-space generation on the same FMS SPN, for the case A; = 5, as 

a function of N. We achieved a speedup of 11.35 when A^ = 16. The serial state-space 

generation requires 14 minutes on a single processor. We also experimented with larger 

values of A:, and various machine sizes. With ^ = 6 there are 537,768 states. The time 

needed to generate the state-space varied from three hours using 2 SP-2 processors (the 

smallest configuration able to solve the problem), to 18 minutes using 32 processors. Using 

32 processors we were able to generate the k = l state-space (1, 639,440 states) in 51 minutes, 

and the k — '^ state-space (4,459,455 states) in four hours. 

The conclusion we may draw from this data is that the algorithm works well, and makes 
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Figure 7: An extreme case for the distributed algorithm. 

possible the generation of state-spaces that are much larger than those usually considered 

tractable. 

6.1     Choosing a good partition function 

Choice of a good partition function is critical. It must provide both locality (if possible), 

and balance. Locality means that, in general, most of a state's descendents are assigned 

to the samie processor as is the parent state. Locality reduces communication overhead. 

Spatial balance means that each processor is assigned approximately the same number of 

states; contrast this with temporal balance which additionally calls for each processor to be 

busy most of the time. Spatial balance is sufficient if problem-solving capacity is a concern, 

whereas temporal balance is required to achieve good speedups. 

The modeling paradigm may provide clues to locality. The SPN reported in this paper is 

a good example. A Petri net state is a vector enumerating the tokens in each place. When a 

transition fires, typically only a small number of components of this vector change. Thus, if 

we base a partitioning rule on the markings of a small fixed set of places (called a control set), 

all transition firings that do not involve control set places reflect state transitions that are 

contained entirely within a processor. To achieve spatial balance we first need to choose the 

control set so that the range of combinations of markings in its places is large. Unfortunately, 

in the worst case one needs to generate the state-space to discover just what that range is; 

we must therefore rely upon the user's intuition about the model to provide this property. 

Lastly, given a wide spread of markings in the control set, we assign a state to a processor 

by applying a hashing function to the marking of its control set. 

To further illustration the difference between spatial and temporal balance, consider the 

extreme case of Fig. 7, where only one arc, ti-^S(^i^i)jnodN-, connects S'^''^ to 5r.('+i)mo<i^^ 

and So £ S^'°. If state ti is the last one examined in each S'^'\ the distributed algorithm 

will run sequentially, even if the states might be evenly allocated onto the N processes, 

and the number of cross arcs is certainly minimum: x — ^- On the other hand, even in 

this unfortunate situation, the distributed algorithm would still have an advantage over the 
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sequential one, since communication overhead would be negligible, and the entire amount of 

memory available on A'' processors would be available. 

For the problem whose performance we studied, {P1,P2,P3} is the control set. The 

hashing function is 

(#Pi + g • #P2 + g^ • #P3) mod N 

where g is a prime number (1013, in our case) and #p indicates the number of tokens in 

place p (in a given marking). The bar chart on the top right in Fig. 8 shows the distribution 

of states using this partitioning function with TV = 6 processes. 

A good tool to decide the quality of the partition function is then the matrix of the 

numbers of edges cut by the partition, T]''^ . Fig. 8 describes these values for four different 

choices of the partition function. The parameters considered are six processes [N = 6) and 

five tokens initially in PI, P2, and P3 {k = 5), resulting in 152,712 states and 1,111,482 

arcs in the timed-to-timed state-space and graph, respectively. These values are obviously 

independent of the partition function chosen. 

A simple hashing on a few components of the state description achieves a reasonably 

uniform allocation of states to processes. Using all the components might not be a good idea 

for several reasons: 

• If linear invariants exist relating the values of the components, and if these values are 

simply summed, the partition function might not achieve a good "random" spread. 

For example, in a closed queuing network, the choice "sum of the number of customers 

in each queue mod A''" would allocate all the states to the same process, a bad choice. 

Petri nets also often exhibit this type of invariants. 

• Multiplying the components by some power of a large prime number, as we did, elimi- 

nates most problems due to the existence of invariants. However, in this case, if every 

component is factored in the computation of the partition function, most, if not all, 

arcs will be cross-arcs, because every event changes one or more components of the 

state. 

Hence, it is best to use only a few components of the state in the definition of the 

partition function. Any event which changes only the values of the other components is then 

guaranteed not to generate any cross-arcs (e.g., tpuMz in Fig. 4, with the first partition 

function). 

If a particular structure is desired for the partition of Q, an appropriate partition function 

might be employed. The third choice in Fig. 8, 

{#PlwM\ + #P1M1 + #P2wM2 + #P2M2 + #P3M2) mod A^ 



for example, results in a block-tridiagonal structure for Q^ except for two blocks, in the 

upper-right and lower-left corners, due to the wrap-around nature of the modulo operator. 

This happens because we intentionally chose the control set so that any events can change 

at most one control set place marking, by at most value 1. Such a sparsity pattern might be 

very desirable, depending on the type of communication available between the workstations. 

If they were connected in a circular fashion with bidirectional links, they could potentially 

be all communicating at the same time, since each workstation only needs to exchange data 

with its two neighbors. 

We observe that the difference between the first and second partition function in Fig. 8 

is just in the multiplication by powers of 1013 in the first case, resulting in a 10% reduction 

in the number of cross arcs, while the state distribution is substantially similar. The price 

paid to obtain the tridiagonal structure with the third partition function is instead a higher 

number of cross arcs (20% more than for the first partition function). Interestingly enough, 

the second and third partition functions result in exactly the same state distribution. This 

is due to the existence of invariants, ensuring, for example, that the number of states where 

zfjzpf^ = m or #pi«,Mi+#FiMi = m is exactly the same, and so on. Finally, the fourth function 

minimizes the number of cross arcs (fewer than a quarter of the arcs are cross arcs), and also 

achieves a good distribution of states. The clearly recognizable patterns in the matrix and 

in the state distributions are due to the independence of the rest of SPN from the number of 

tokens in P3 and P3M2. There are (^"^s"^) = 21 ways to distribute A; = 5 tokens over three 

places. For every such combination, exactly 7,272 combinations of tokens in the other places 

exist (7,272 x 21 = 152, 712, the total number of states). Hence, the value of l^-^'^l is easily 

determined once we know how many of the 21 combinations correspond to process i. The 

hashing enforced by the expression (#P3-f-#P3M2"1013) mod A^ results in three combinations 

assigned to processes 0, 2, and 4 (|5^'°| = \S^^^\ = |5^'^| = 3 x 7,272 = 21,816), and four 

combinations assigned to processes 1, 3, and 5 {\S^'^\ = \S^'^\ = \S^'^\ = 4x7,272 = 29,088). 

Clearly, much work remains to be done in this area, but the good news is that even just 

moderately informed choices, such as the first two in Fig. 8 still achieve our goals of locality, 

spatial balance, and temporal balance. 

7    Conclusion and future work 

We have demonstrated the feasibility of distributing the state-space generation phase of 

discrete state stochastic system analysis using only a small network of workstations. The 

approach exploits the memories of multiple workstations, allowing one to build and perform 

logical analyses of state-spaces too large for a single processor. We stress that our approach 

provides a distributed algorithm which is independent of the particular user-level formalism 
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adopted for the specification of the model. 

To improve the appHcability and usefulness of our approach, two aspects need to explored 

further. First, a centralized numerical solution is appropriate when using up to a dozen 

or so workstations, or when a machine particularly suited for numerical computation and 

equipped with a substantial amount of memory is available. However, our approach is 

a natural candidate for a completely distributed implementation, so we intend to explore 

the rich area of distributed solutions of linear systems, and implement some of the most 

appropriate techniques. This becomes a necessity if we hope to scale up to a much larger 

number of workstations. 

Second, the efficiency of our approach is highly sensitive to the partition heuristics used. 

Hence, we plan to investigate algorithms to derive a "good" partition from an automatic 

structural analysis of the model, that is, before starting to generate the state-space. This is 

doubly important because the specification of the heuristics, in addition to being a critical 

factor, is a new burden put upon the user with respect to the sequential solution. 
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0 1 2 3 4 5 

0 104,265 31,123 10,844 9,345 9,376 38,528 

1 47,925 107,937 30,878 11,797 10,062 9,588 

2 7,640 47,830 97,875 28,272 11,235 9,027 

3 6,729 6,103 42,542 83,385 25,288 9,698 

4 7,750 5,694 5,541 36,516 73,881 24,239 

5 27,516 7,962 6,411 6,494 33,967 78,219 

(#Pi + #p2 • 1013 + #P3 • 1013^) mod iV 

X = 565,920    (50.9% of 7?) 

0 1 2 3 4 5 

0 73,269 18,070 16,619 6,427 5,065 37,889 

1 43,422 87,870 20,373 19,878 8,433 7,345 

2 7,671 51,855 96,147 22,236 22,286 10,052 

3 9,413 6,723 56,546 94,080 22,644 22,731 

4 19,805 7,587 5,150 55,090 82,395 21,368 

5 17,349 15,108 5,356 3,464 47,782 63,984 

(#Pi + #P2 + #P3) mod N 

X = 613,737   (55.2% of 7?) 

0 1 2 3 4 5 

0 63,282 41,1.30 0 0 0 48,253 

1 59,677 76,956 49,782 0 0 0 

2 0 71,701 84,660 54,948 0 0 

3 0 0 77,209 82,662 54,012 0 

4 0 0 0 74,185 71,694 47,148 

5 35,940 0 0 0 63,715 54,528 

X = 677,700   (61.0% of 77) 

0 1 2 3 4 5 

0 120,906 13,536 0 7,272 14,544 7,272 

1 0 161,208 9,396 7,272 0 29,088 

2 14,544 0 120,906 20,808 0 7,272 

3 0 21,816 0 161,208 9,396 14,544 

4 0 7,272 14,-544 0 120,906 20,808 

5 9,396 7,272 0 29,088 0 161,208 
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Figure 8: Number of arcs from process i to process j, rj^'^ {N = 6 and k = 5). 
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